Hydrogeophysical investigation and estimation of groundwater potentials of the Lower Palaeozoic to Precambrian crystalline basement rocks in Keffi area, north-central Nigeria, using resistivity methods
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The use of resistivity sounding and two-dimensional (2-D) resistivity imaging was investigated with the aim of delineating and estimating the groundwater potential in Keffi area. Rock types identified are mainly gneisses and granites. Twenty-five resistivity soundings employing the Schlumberger electrode array were conducted across the area. Resistivity sounding data obtained were interpreted using partial curve matching approach and 1-D inversion algorithm, RESIST ver- sion 1.0. The 2-D resistivity imaging was also carried out along two traverses using dipole–dipole array, and the data obtained were subjected to finite element method modeling using DIPRO inversion algorithm to produce a two-dimensional subsurface geological model. Interpretation of results showed three to four geoelectrical layers. Layer thickness values were generally less than 2 m for collapsed zone, and ranged from 5 to 30 m for weathered bedrock (saprolite). Two major aquifer units, namely weathered bedrock (saprolite) aquifer and frac- tured bedrock (saprock) aquifer, have been delineated with the latter usually occurring beneath the former in most areas. Aquifer potentials in the area were estimated using simple schemes that involved the use of three geoelectrical parameters, namely: depth to fresh bedrock, weathered bedrock (saprolite) resistivity and fractured bedrock (saprock) resistivity. The as- sessment delineated the area into prospective high, medium and low groundwater potential zones.