Articles
Permanent URI for this collection
Browse
Browsing Articles by Author "Adedeji, O."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access Theoretical Confirmation of Seasonal and Solar Radiation Impacts on Outdoor Atmospheric Aerosols (PM2.5, SO2 and CO) in FCT Abuja, Nigeria(Department of Physics, Nasarawa State University Keffi, 2015-09-01) Shehu, M.S.; Umar, Ibrahim; Adedeji, O.; Mundi, A.A.; Lawal, R.S.Aerosols PM2.5, SO2 and CO were studied within the Federal Capital Territory of Nigeria (F.C.T Abuja), the area comprises of 6 (six) councils “AMAC, Abaji, Bwari, Kuje, Kwali and Gwagwalada”. The study covered a period of one year (2017- 2018), irrespective of the seasonal variation of the study area, the impacts of aerosols on incident solar energy for the period was observed. The National Space Research and Development Agency (NASRDA) uses the atmospheric satellites (AS) data of within an altitude 6 Km from the ground level. The data came in NETCDF format, which was extracted by a specialized software called the Arc Map 10.4.1, converted and exported in DBF format which can be read by Microsoft excel. The study shows that the human population in F.C.T increased with (r= 2.6 ± 1) months per year which negatively affect the aerosol concentrations and the seasonal impact analysis conform to adiabatic process with respect to the atmospheric variables, as the concentrations were found to be higher in dry than in wet season. Also the Solar radiation impact study reveals a change within solar insolation range of 5.5-6.5 Kwh/m2/day(CO), 2.8-4.5 Kwh/m2/day (SO2) and 4.0-6.5 Kwh/m2/day (PM2.5) and a percentage decrease of 8.42 %, 29.50 %, and 2.87 % was recorded respectively. Which implies a relative impact of solar energy on aerosol (i.e. higher intensity solar energy also reduces a small fraction of the atmospheric aerosol) and vice-versa